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I N T E N S I T Y  E X T R E M A  
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Experimental results on local heat transfer on the entrance segment of a round smooth tube with a sharp 

leading edge when Red = (13-110)'103, X / d  = 0.1-13, which support the previously proposed model for 

separated flow, are examined. It is shown that under separated flow conditions the usual sequence of flow 

transitions in a boundary layer for mixed nonseparated flows and Red > 104 is still retained. Formulas are 

obtained for calculating local heat transfer coefficients on a segment where a laminar boundary layer occurs, 

including cross sections where these coefficients acquire extreme values. 

Local heat transfer on entrance segments of tubes and channels having a sharp inlet edge with an angle of 

900 within the range of Red > 104 and X/d < 15 has been thoroughly studied, mainly with the aim of making 

corrections to the equations that govern the specific features of heat transfer under developed flow conditions. At the 

same time, because of difficulties associated with attaining acceptable measuring accuracy when the reduced lengths 

approach zero and existing concepts of the mechanism of flow separation behind a sharp edge as a phenomenon 

accompanied by rapid boundary layer turbulization, up to now some details of the distribution a = f(X/d) of primary 

importance have not been traced or have not been interpreted correctly on physical grounds. For example, beyond a 

maximum of the local heat transfer coefficients at X/d < 1, where attachment is presumed, a second maximum is 

found in [1 ] at X/d = 3-5, although it is not as well-defined as the first one. The important question of a possible 

deep minimum of the heat transfer coefficients in a stagnation region that, as follows from [2 ], is adjacent to the 

entrance cross section remains open. Owing to the aforesaid, the present article deals with axial distributions of the 

local heat transfer coefficients in air flow in a tube with a sharp inlet edge over the reduced length range X/d = 0.1-13 

at Red = (13-110). l03, which corresponds to mean flowrate velocities of 5.5-46 m/sec. 

Experiments were carried out on a stand with a cross section 36 mm in diameter, described in [3 ]. A flow-type 

calorimeter with seven built-in heat flux sensors [4 ] was used for X/d _> 0.4. The arrangement of the stand with the 

flow-type calorimeter is shown in Fig. la. Water, boiling in the cavity of the casing of linear segment 5 is pumped by 

micropump 3 through the jacket of calorimeter 1 and the annular chamber of inlet flange 2. The water flowrate was 

regulated so that its temperature drop in the tube circuit would not exceed 1 K and the regime T w = const would be 

kept at 369-371 K. The axial coordinates of the sensors were varied by placing heated inserts of length AX = 6 and 

12.5 mm in the joint between the inlet flange and the calorimeter or linear segments 4 of length l = 100 or 200 mm 

in the same joint. The design of the inserts is shown in Fig. lb. Measurement results obtained using the heat flux 

sensors were processed according to the recommendations of [5 ] and had an error of -+ 10%. 

For X/d  < 0.9 the local heat transfer intensity was determined by the method described in [6 ]. Instead of 

the flow-type calorimeter, a working segment, whose design is shown in Fig. lc, was connectdd with the stand inlet. 

Its cylindrical active part, held in the necks of textolite 1 and steel 2 flanges, was made from the compound UP592-11, 

which retains its mechanical properties up to temperatures of 420-430 K [7 ]. First, a round billet (din/dou t = 36/50 

mm/mm) was manufactured by permanent-mold casting. Then, the outer diameter of the billet was turned down to 
a diameter of 37 mm, and 13 copper-constantan thermocouples having wires 0.1 mm in diameter were glued to the 

thin-walled jacket obtained. The thin-walled jacket equipped with the thermocouples was placed in the same mold, 
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Fig. 1. Arrangement of the experimental set-up: a) entrance segment with a 
flow-type calorimeter: 1) calorimeter; 2) heated inlet flange; 3) water pump; 4, 
5) linear segments; 6) separator; 7) condenser; 8) electric heater; b) heated 
insert; c) entrance segment for determining the local heat transfer coefficients 
by the gradient method: 1, 2) inlet and connecting flanges; 3) electric heater; 
4) thermal insulation. 

and the original outer diameter of the working section was restored by a second casting of the compound. Electric 

heater 3 was wound in a threaded groove with a pitch of 0.3 mm and consisted of three independent sections supplied 

from dc sources. Thermocouples recording the heated surface temperature were located in the grooves beneath the 

electric heater. The wall temperature of the working segment was monitored in the radial direction by three 

thermocouples at its inlet face and by three thermocouples in drilled holes at a distance of 34 mm from the inlet edge. 

Two thermocouples were glued at the inner and outer boundaries of thermal insulation layer 4. During the measure- 

ments the wall temperature of the working segment on the heat removal side was kept constant along X at 369-371 

K. Heat losses to the surrounding medium did not exceed 2 %. 

Measurements with the IT-2 device yielded a thermal conductivity of the pure compound of ;t = 0.43 

W/(m- K) [8 ], and within the range 290-380 K the dependence 2 -- f(T) proved insignificant. The effective thermal 

conductivity of the material of the wall with built-in thermocouples was estimated from calibration experiments under 
natural convection by Eq. (1). It amounted to ;t -- 0.8 W/(mK) with an error of _+8 ~o at a confidence probability of 

0.95: 

~ ,=  qllnr~lrx 

2n (T~ - -  Tx) 
(1) 
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Fig. 2. Distribution of the local heat transfer coefficients a, W/(m 2- K), along 
the entrance segment: 1) Red= 13.10a; 2) 28. 103; 3) 42. 103; 4) 77. 103; 5) Re d 
-- 110- 103; 6) by formula (8). 

Under forced convection, the longitudinal distributions of the local heat transfer coefficients were found by 

solving differential heat conduction equation (2). Following [6 ], boundary conditions (3)-(5) were assigned using 

temperature measurements, and unknown boundary condition (6) was chosen by successive approximations so that 

predicted and measured temperatures of an inner surface would agree with a given accuracy 

02T 1 OT O2T 
k -I- ---- O, (2) 

ar 2 r Or OX 2 

Tl~=o = T.=o (r), (3) 

TI~=~, = T., (r), (4) 

Tit=r, = Tr, (X), (5) 

(zig=r, = a~, (X) (6) 

(trial-and-error method). The final discrepancy in temperature was taken equal to 0.5 K. An ES-1061 computer was 

used for solution by the net method with a net step of 1 mm in the radial direction and 2 mm along the X-axis. To 

find the roots of the equivalent system of linear algebraic equations the Gauss method was used with the choice of 

the basic element [9 ]. This reduced the sensitivity toward rounding off errors. The final error in determining the 

local heat transfer coefficients amounted to +_22%. 

Graphs combining the experimental results of both runs are shown in Fig. 2. The dashed lines are results 

obtained by the gradient method. The distributions a = f(X/d) have a minimum near the input edge and two maxima 

downstream. Stabilization of the heat transfer coefficients starts in the region X/d  > 7.5, where their values 

correspond to the following formula [10 ]* with a deviation of no more than 5%: 

Nua = 0,022 Re~'SPr~ 43., (7) 

The extrema are almost stationary over the considere ranges of Re0. In this case, a minimum lies not in the stagnation 
region as would be expected from vizualized observations [2 ], but in the cross section X/d = 0.22 somewhat ahead 

of the far edge of a small-size vortex. At the minimum the local values of a remain 20-30% higher than in developed 
flow, and the next, in essence jumpwise, increase in heat transfer by 130-150% takes place on a very small (0.3-0.35 

diameter) segment of the tube. The second maximum results from the transient process in the laminar boundary 

* Some of the experimental data for X/d  > 7.5 are plotted in Fig.4. 
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Fig. 3. Location parameters and heat transfer intensity vs Reynolds number for 
characteristic cross sections on the entrance segment: a: I) minimum of the heat 
transfer coefficients; II) vortex edge; III) global maximum of heat transfer 
coefficients: 1) according to [13]; 2) according to Fig. 2; 3) according to [12 ]; 
4) acccording to [ 15 ]; 5) according to [14 ]; IV and V) beginning and end of the 
transition region; b: 1) minimum of the heat transfer coefficients; 2) global 
maximum of the heat transfer coefficients. 

layer. From Fig. 2 it is seen that the critical coordinates for transition practically do not depend on Red, and the usual 

conditions Rxcr] = const, R]xIcr -- const for nonseparated flows are not satisfied. The latter should not be considered 

unexpected since in [11 ] it has been found that on the entrance segments of channels having leading edges profiled 

by curcles of small radii R /d  = 0.125-0.5 the transition region is increasingly shifted downstream with increase in 
I II Re d and the quantities Rxcr and Rxcr are no longer constant. The dash-dot line in Fig. 2 denotes the location of cross 

sections with a zero velocity at the wall. Their coordinates are calculated by formula (8) taken from [12 ]. No any 

specific features associated with the above cross sections are revealed in the configuration of the distributions a = 

f(X/d): 

(X/d)o = 0, l l5Re ~ ~8 (8) 

The coordinates of the extrema of local heat transfer on the entrance segment of a tube with a sharp inlet 

edge are shown in Fig. 3a. Curve III, pertaining to the global maximum, was calculated using an equation 

approximating the data in Fig. 2 and those from [13-15] within the range of Rede = (3-110). 103: 

108 
(X/do)max = 0,46 -~ Reeo. (9) 

Curve II for the cross section in which the far edge of the vortex is located, is constructed using the data in 

[2 ]. The relation Nud = f(Red) at a minimum and in the cross section of a global maximum is shown in Fig. 3b and 

is governed by the equations 

Nu~ in = 0,108 Re ~ (10) 

Nu~ ax = 0,252 Re ~ (11) 

Since the distributions a = f(X/d) incorporate structural components with a laminar heat transfer regime, 
the experimental results are processed in dimensionless form in Fig. 4 in the system of similarity parameters [NUd; 

1/Pe X/d ]. Just as in Fig. 2, the dashed line identifies a region where heat transfer coefficients have been determined 
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Fig. 4. Dimensionless processing of the experimental data: I) by formula (12). 
The symbols are the same as in Fig. 2. 

by the gradient method. In the upper graph for Red = 1 10.10 3 a heat transfer intensity minimum A, a global maximum 

B, transition region edges C and D are indicated. On the left, the limiting Nusselt numbers refer to the reduced length 

X/d  = 0.1 because of a possible incorrectness of the local heat transfer coefficients calculated by the gradient method 

near the inlet edge, where it is necessary to resort to an extrapoled estimate of the temperature state of the surface 

in the cross section X/d  = 0. Curve I corresponds to the equation for the case of a nonseparated laminar flow in the 

boundary layer of the entrance segment and for Red.> 10 4 [16 ]: 

( ) N u a = 0 , 3 8 1  1 X -o,~ 
Pe d -k2,3. (12) 

The graphs of NUd = f (1 /Pe .x /d )  for constant Reynolds numbers are identical in shape and are quite 

satisfactorily linearized inside the components of their fragments up to the end of transition region D. Ahead of 

minimum A and on the segment B-C that precedes beginning of the transition, a slope of the averaging lines is m = 
-0.55, which is correlated with values characterizing the specific features of heat transfer in laminar flows, especially 

if the flow counter to the core near a minimum and the existence of a velocity discontinuity in the boundary layer 

beyond global maximum B are taken into account. On segment A-B the slope is m = +1. The local Nusselt numbers 

in the stagnation region adjacent to the input edge and beneath the vortex close to minimum A are near curve I 

regardless of the specific features of the velocity profiles. Only at Red = 13.103 are the discrepancies above 25%. 

However, beyond maximum B, where secondary laminar flow starts, the NUd numbers lie much higher, deviating 

from curve I by 150-250%. 

A computational scheme for the local heat transfer coefficients ahead of a minimum and on segments A-B 

and B-C must be constructed by using the similarity-type number relation Nud -- cRe~ (1/Pe.  X/d)m because of the 

diversity of the graphs Nud = f (1/Pe X/d) according to the Reynolds number. Analysis yields the following relations: 

( I X )  - ~  
- -  ( 1 3 )  at 0,1 < X/d < (X/d)mt~ Nua = 0,06 Re,~' 11 Pe d 

at (X/d)vam < X/d< (X/d)max Nua " 0,355 Re~ '6~ ( pel Xd. ), (14) 

at (X/d)raax < X/d < (Z/d)~p Nua = 0,215 R e ] ' "  ( pel Xd ) - o , s , .  (15) 

Upon substituting Pe = RePr and Pr = 0.71, Eqs. (13)-(15) assume the form: 

at 0,1 .CX/d<(X/d),~tn Nua = 0,049 Re~ '66 (X/d) -~ (16) 

at (X/d)min < X]d,~ (X/d)ma.~ Nua = 0,5 Re~ 6 (X/d), (17) 
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Fig. 5. Generalization of the experimental data on the local heat transfer on the 
portions of the entrance segment between a global maximum and the beginning 
of a transition (B-C in Fig. 4): I) by formula (15). The symbols are the same as 
those in Fig. 2. 

at (X/d)max < X/d < (X/d)~p Nud = O, 178 Re~' 66 (X/d)-O, ~5 (18) 

Coincidence of exponents of the Reynolds number in Eqs. (16)-(18) enables one to assume that 

countercurrent laminar flow in a boundary layer is retained beneath the vortex and even in some part of the stagnation 

region, and the increase in the local heat transfer intensity ahead of a minimum is the cause of the sharp decrease 

in the thickness of the film of countercurrent flow to the left of cross section A. Equations (16)-(18) agree with 

experiment with an error _ 10~.  When the coordinates of the minimum (Fig. 3) and the global maximum of the local 

heat transfer coefficients (Eq. (9)) are substituted into the latter equations, the calculated Nu~ in numbers prove to 

be 10-127o less, and the Nu~ ax numbers 10-127o higher, than those in Eqs. (10) and (11) since the graphs of NUd 

= f (1 /Pe-X/d)  become nonlinear in the immediate vicinity of extrema. A generalization of the experimental Nusselt 

numbers on segment B-C (see Fig. 4) between a global maximum and the beginning of a transition based on Eq. (15) 

is shown in Fig. 5. 

In conclusion, we note that the laws of local heat transfer on the entrance segment of a smooth tube with a 

sharp inlet edge, supporting as a whole the physical model of [2 ], indicate that the boundary layer in a separated 

flow region, just as  in nonseparated mixed flows, alternately passes through laminar, transient, and turbulent stages 
when Re d > 104. In this case, a minimum and a global maximum of the heat transfer coefficients accompany the first 

of the mentioned stages involving laminar boundary layer flow. 

N O T A T I O N  

X, longitudinal coordinate, mm; AX, length of the insert, ram; l, length of the linear section, ram; d, diameter 
of the flow-type part of the stand, mm; rl, radius of the inner tube surface, mm; r2, radius of the outer tube surface, 

mm; 2, thermal conductivity of the compound, W/(m-K);  T, temperature, K; a, local heat transfer coefficient, 
W/(m 2. K); Nud, Nusselt number; Red, Reynolds number; Pe, Peclet number; Pr, Prandtl number. Subscripts and 
superscripts: max, maximum; min, minimum; e, equivalent; cr, critical; I, II, first and second critical values. 
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